GCD
write a function that, given natural numbers a and b, computes their greatest common denominator.
Function Signature
def GCD(a b:Nat):Nat
Theorem Signature
theorem gcd_is_div (x y: Nat):
(p: x > 0)→ ((GCD x y) ∣ x) ∧ ((GCD x y) ∣ y)
Additional Theorem Signature
theorem gcd_is_greatest (x y: Nat):
(x>0) → Not (∃ z: Nat, z∣ x ∧ z∣ y ∧ z> GCD x y )
Please log in or register to submit a solution for this challenge.