Submission Details
Challenge: solve1x1
Submitted by: Robin
Submitted at: 2025-03-28 18:49:41
Code:
import Mathlib.Data.Rat.Defs
def solve1x1(a b: Rat): Option Rat
:= if a = 0 ∧ b ≠ 0 then none else some (b / a)
theorem Rat.mul_div_cancel (a b : Rat) (h : a ≠ 0) : a * (b / a) = b := by
change a * (b * a⁻¹) = b
rw [Rat.mul_comm b, ← Rat.mul_assoc, Rat.mul_inv_cancel _ h, Rat.one_mul]
First Theorem Proof:
theorem solve1x1_correct(a b:Rat): (∃ x, a*x=b) -> a * (solve1x1 a b).get! =b
:= by
intro ⟨x, hx⟩
unfold solve1x1
by_cases h : a = 0
· simp only [h, Rat.zero_mul] at hx
cases hx
simp [Rat.div_def]
· simp only [h, ne_eq, false_and, ↓reduceIte, Option.get!_some]
exact Rat.mul_div_cancel _ _ h
Status: Correct
Feedback:
------------------ Replaying /root/CodeProofTheArena/temp/tmplv__a9_x/target.olean Finished imports Finished replay --- def solve1x1 ℚ → ℚ → Option ℚ := fun (a : Rat) (b : Rat) => sorryAx.{1} (Option.{0} Rat) Bool.false #[propext, sorryAx] --- theorem solve1x1_correct ∀ (a b : ℚ), (∃ x, a * x = b) → a * (solve1x1 a b).get! = b #[propext, sorryAx] ------------------ Replaying /root/CodeProofTheArena/temp/tmplv__a9_x/proof.olean Finished imports Finished replay --- def solve1x1 ℚ → ℚ → Option ℚ := fun (a : Rat) (b : Rat) => ite.{1} (Option.{0} Rat) (And (Eq.{1} Rat a (OfNat.ofNat.{0} Rat 0 (Rat.instOfNat 0))) (Ne.{1} Rat b (OfNat.ofNat.{0} Rat 0 (Rat.instOfNat 0)))) (instDecidableAnd (Eq.{1} Rat a (OfNat.ofNat.{0} Rat 0 (Rat.instOfNat 0))) (Ne.{1} Rat b (OfNat.ofNat.{0} Rat 0 (Rat.instOfNat 0))) (instDecidableEqRat a (OfNat.ofNat.{0} Rat 0 (Rat.instOfNat 0))) (instDecidableNot (Eq.{1} Rat b (OfNat.ofNat.{0} Rat 0 (Rat.instOfNat 0))) (instDecidableEqRat b (OfNat.ofNat.{0} Rat 0 (Rat.instOfNat 0))))) (Option.none.{0} Rat) (Option.some.{0} Rat (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.instDiv) b a)) #[propext] --- theorem solve1x1_correct ∀ (a b : ℚ), (∃ x, a * x = b) → a * (solve1x1 a b).get! = b #[propext, Classical.choice, Quot.sound] --- def solve1x1_correct.match_1 ∀ (a b : ℚ) (motive : (∃ x, a * x = b) → Prop) (h : ∃ x, a * x = b), (∀ (x : ℚ) (hx : a * x = b), motive ⋯) → motive h := fun (a : Rat) (b : Rat) (motive : (Exists.{1} Rat (fun (x : Rat) => Eq.{1} Rat (HMul.hMul.{0, 0, 0} Rat Rat Rat (instHMul.{0} Rat Rat.instMul) a x) b)) -> Prop) (h._@.temp.tmplv__a9_x.proof._hyg.159.172 : Exists.{1} Rat (fun (x : Rat) => Eq.{1} Rat (HMul.hMul.{0, 0, 0} Rat Rat Rat (instHMul.{0} Rat Rat.instMul) a x) b)) (h_1 : forall (x : Rat) (hx : Eq.{1} Rat (HMul.hMul.{0, 0, 0} Rat Rat Rat (instHMul.{0} Rat Rat.instMul) a x) b), motive (Exists.intro.{1} Rat (fun (x : Rat) => Eq.{1} Rat (HMul.hMul.{0, 0, 0} Rat Rat Rat (instHMul.{0} Rat Rat.instMul) a x) b) x hx)) => Exists.casesOn.{1} Rat (fun (x : Rat) => Eq.{1} Rat (HMul.hMul.{0, 0, 0} Rat Rat Rat (instHMul.{0} Rat Rat.instMul) a x) b) (fun (x : Exists.{1} Rat (fun (x : Rat) => Eq.{1} Rat (HMul.hMul.{0, 0, 0} Rat Rat Rat (instHMul.{0} Rat Rat.instMul) a x) b)) => motive x) h._@.temp.tmplv__a9_x.proof._hyg.159.172 (fun (w._@.temp.tmplv__a9_x.proof._hyg.181 : Rat) (h._@.temp.tmplv__a9_x.proof._hyg.182 : Eq.{1} Rat (HMul.hMul.{0, 0, 0} Rat Rat Rat (instHMul.{0} Rat Rat.instMul) a w._@.temp.tmplv__a9_x.proof._hyg.181) b) => h_1 w._@.temp.tmplv__a9_x.proof._hyg.181 h._@.temp.tmplv__a9_x.proof._hyg.182) #[propext] --- theorem Rat.mul_div_cancel ∀ (a b : ℚ), a ≠ 0 → a * (b / a) = b #[propext, Classical.choice, Quot.sound] Finished with no errors.
Second Theorem Proof:
theorem solve1x1_none(a b:Rat): (Not (∃ x, a*x=b)) -> solve1x1 a b=none
:= by
intro h
unfold solve1x1
simp only [ne_eq, ite_eq_left_iff, not_and, Decidable.not_not, reduceCtorEq, imp_false,
Classical.not_imp]
constructor
· by_contra h'
apply h
exists b / a
exact Rat.mul_div_cancel _ _ h'
· rintro rfl
apply h
exists 0
exact Rat.mul_zero a
Status: Correct
Feedback:
------------------ Replaying /root/CodeProofTheArena/temp/tmplv__a9_x/target2.olean Finished imports Finished replay --- def solve1x1 ℚ → ℚ → Option ℚ := fun (a : Rat) (b : Rat) => sorryAx.{1} (Option.{0} Rat) Bool.false #[propext, sorryAx] --- theorem solve1x1_none ∀ (a b : ℚ), (¬∃ x, a * x = b) → solve1x1 a b = none #[propext, sorryAx] ------------------ Replaying /root/CodeProofTheArena/temp/tmplv__a9_x/proof2.olean Finished imports Finished replay --- theorem temp.tmplv__a9_x.proof2._auxLemma.1 ∀ {α : Sort u_1} {p : Prop} [inst : Decidable p] {x y : α}, ((if p then x else y) = x) = (¬p → y = x) #[propext] --- def solve1x1 ℚ → ℚ → Option ℚ := fun (a : Rat) (b : Rat) => ite.{1} (Option.{0} Rat) (And (Eq.{1} Rat a (OfNat.ofNat.{0} Rat 0 (Rat.instOfNat 0))) (Ne.{1} Rat b (OfNat.ofNat.{0} Rat 0 (Rat.instOfNat 0)))) (instDecidableAnd (Eq.{1} Rat a (OfNat.ofNat.{0} Rat 0 (Rat.instOfNat 0))) (Ne.{1} Rat b (OfNat.ofNat.{0} Rat 0 (Rat.instOfNat 0))) (instDecidableEqRat a (OfNat.ofNat.{0} Rat 0 (Rat.instOfNat 0))) (instDecidableNot (Eq.{1} Rat b (OfNat.ofNat.{0} Rat 0 (Rat.instOfNat 0))) (instDecidableEqRat b (OfNat.ofNat.{0} Rat 0 (Rat.instOfNat 0))))) (Option.none.{0} Rat) (Option.some.{0} Rat (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.instDiv) b a)) #[propext] --- theorem solve1x1_none ∀ (a b : ℚ), (¬∃ x, a * x = b) → solve1x1 a b = none #[propext, Classical.choice, Quot.sound] --- theorem temp.tmplv__a9_x.proof2._auxLemma.3 ∀ {p : Prop} [inst : Decidable p], (¬¬p) = p #[propext] --- theorem temp.tmplv__a9_x.proof2._auxLemma.2 ∀ {a b : Prop}, (¬(a ∧ b)) = (a → ¬b) #[propext] --- theorem temp.tmplv__a9_x.proof2._auxLemma.4 ∀ {a : Prop}, (a → False) = ¬a #[propext] --- theorem Rat.mul_div_cancel ∀ (a b : ℚ), a ≠ 0 → a * (b / a) = b #[propext, Classical.choice, Quot.sound] --- theorem temp.tmplv__a9_x.proof2._auxLemma.5 ∀ {a b : Prop}, (¬(a → b)) = (a ∧ ¬b) #[propext, Classical.choice, Quot.sound] Finished with no errors.