Submission Details
Challenge: Two, but not four
Submitted by: ansar
Submitted at: 2025-05-10 21:31:15
Code:
import Mathlib.Tactic
def dummy (n : ℕ) : ℕ
:= 0
First Theorem Proof:
theorem solution (n : ℕ) : 2 ∣ 3 ^ (2 * n) + 1 ∧ ¬ 4 ∣ (3 ^ (2 * n) + 1)
:= by
constructor
· simp [Nat.dvd_iff_mod_eq_zero, Nat.add_mod, Nat.pow_mod]
· simp [Nat.dvd_iff_mod_eq_zero, Nat.add_mod, pow_mul, Nat.pow_mod]
Status: Correct
Feedback:
------------------ Replaying /root/CodeProofTheArena/temp/tmpo4xr3jl7/target.olean Finished imports Finished replay --- def dummy ℕ → ℕ := fun (n : Nat) => sorryAx.{1} Nat Bool.false #[sorryAx] --- theorem solution ∀ (n : ℕ), 2 ∣ 3 ^ (2 * n) + 1 ∧ ¬4 ∣ 3 ^ (2 * n) + 1 #[propext, sorryAx] ------------------ Replaying /root/CodeProofTheArena/temp/tmpo4xr3jl7/proof.olean Finished imports Finished replay --- theorem temp.tmpo4xr3jl7.proof._auxLemma.1 ∀ {m n : ℕ}, (m ∣ n) = (n % m = 0) #[propext] --- def dummy ℕ → ℕ := fun (n : Nat) => OfNat.ofNat.{0} Nat 0 (instOfNatNat 0) #[] --- theorem solution ∀ (n : ℕ), 2 ∣ 3 ^ (2 * n) + 1 ∧ ¬4 ∣ 3 ^ (2 * n) + 1 #[propext] Finished with no errors.