Submission Details
Challenge: solveGeom
Submitted by: GasStationManager
Submitted at: 2024-11-24 11:29:34
Code:
def solveGeom(a t:Nat)(h:a>1):Nat
:=sorry
First Theorem Proof:
theorem solveGeom_isgeq(a t:Nat)(h:a>1): a^((solveGeom a t h)+1)-1 >=t*(a-1)
:=sorry
Status: Incorrect
Feedback:
found a problem in /root/CodeProofTheArena/temp/tmp117v7r7f/proof.olean uncaught exception: sorryAx is not in the allowed set of standard axioms ------------------ Replaying /root/CodeProofTheArena/temp/tmp117v7r7f/target.olean Finished imports Finished replay --- def solveGeom (a : ℕ) → ℕ → a > 1 → ℕ := fun (a : Nat) (t : Nat) (h : GT.gt.{0} Nat instLTNat a (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) => sorryAx.{1} Nat Bool.false #[sorryAx] --- theorem solveGeom_isgeq ∀ (a t : ℕ) (h : a > 1), a ^ (solveGeom a t h + 1) - 1 ≥ t * (a - 1) #[propext, sorryAx] ------------------ Replaying /root/CodeProofTheArena/temp/tmp117v7r7f/proof.olean Finished imports Finished replay --- def solveGeom (a : ℕ) → ℕ → a > 1 → ℕ := fun (a : Nat) (t : Nat) (h : GT.gt.{0} Nat instLTNat a (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) => sorryAx.{1} Nat Bool.false #[sorryAx] --- theorem solveGeom_isgeq ∀ (a t : ℕ) (h : a > 1), a ^ (solveGeom a t h + 1) - 1 ≥ t * (a - 1) #[propext, sorryAx]
Second Theorem Proof:
theorem solveGeom_ismin(a t:Nat)(h:a>1): Not (∃ y<solveGeom a t h, a^(y+1)-1>= t*(a-1))
:=sorry
Status: Incorrect
Feedback:
found a problem in /root/CodeProofTheArena/temp/tmp117v7r7f/proof2.olean uncaught exception: sorryAx is not in the allowed set of standard axioms ------------------ Replaying /root/CodeProofTheArena/temp/tmp117v7r7f/target2.olean Finished imports Finished replay --- def solveGeom (a : ℕ) → ℕ → a > 1 → ℕ := fun (a : Nat) (t : Nat) (h : GT.gt.{0} Nat instLTNat a (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) => sorryAx.{1} Nat Bool.false #[sorryAx] --- theorem solveGeom_ismin ∀ (a t : ℕ) (h : a > 1), ¬∃ y < solveGeom a t h, a ^ (y + 1) - 1 ≥ t * (a - 1) #[sorryAx, propext] ------------------ Replaying /root/CodeProofTheArena/temp/tmp117v7r7f/proof2.olean Finished imports Finished replay --- def solveGeom (a : ℕ) → ℕ → a > 1 → ℕ := fun (a : Nat) (t : Nat) (h : GT.gt.{0} Nat instLTNat a (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) => sorryAx.{1} Nat Bool.false #[sorryAx] --- theorem solveGeom_ismin ∀ (a t : ℕ) (h : a > 1), ¬∃ y < solveGeom a t h, a ^ (y + 1) - 1 ≥ t * (a - 1) #[sorryAx, propext]