Submission Details
Challenge: minFac
Submitted by: GasStationManager
Submitted at: 2024-11-24 12:48:24
Code:
def minFac(a:Nat) (h: a>1): Nat
:=sorry
First Theorem Proof:
theorem minFac_isfac(a:Nat)(h: a>1): ( (minFac a h) ∣a) ∧(minFac a h>1)
:=sorry
Status: Incorrect
Feedback:
found a problem in /root/CodeProofTheArena/temp/tmp63o5e0k4/proof.olean uncaught exception: sorryAx is not in the allowed set of standard axioms ------------------ Replaying /root/CodeProofTheArena/temp/tmp63o5e0k4/target.olean Finished imports Finished replay --- def minFac (a : ℕ) → a > 1 → ℕ := fun (a : Nat) (h : GT.gt.{0} Nat instLTNat a (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) => sorryAx.{1} Nat Bool.false #[sorryAx] --- theorem minFac_isfac ∀ (a : ℕ) (h : a > 1), minFac a h ∣ a ∧ minFac a h > 1 #[sorryAx] ------------------ Replaying /root/CodeProofTheArena/temp/tmp63o5e0k4/proof.olean Finished imports Finished replay --- def minFac (a : ℕ) → a > 1 → ℕ := fun (a : Nat) (h : GT.gt.{0} Nat instLTNat a (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) => sorryAx.{1} Nat Bool.false #[sorryAx] --- theorem minFac_isfac ∀ (a : ℕ) (h : a > 1), minFac a h ∣ a ∧ minFac a h > 1 #[sorryAx]
Second Theorem Proof:
theorem minFac_ismin(a:Nat)(h:a>1): Not (∃ y>1,( y ∣ a) ∧y<minFac a h)
:=sorry
Status: Incorrect
Feedback:
found a problem in /root/CodeProofTheArena/temp/tmp63o5e0k4/proof2.olean uncaught exception: sorryAx is not in the allowed set of standard axioms ------------------ Replaying /root/CodeProofTheArena/temp/tmp63o5e0k4/target2.olean Finished imports Finished replay --- def minFac (a : ℕ) → a > 1 → ℕ := fun (a : Nat) (h : GT.gt.{0} Nat instLTNat a (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) => sorryAx.{1} Nat Bool.false #[sorryAx] --- theorem minFac_ismin ∀ (a : ℕ) (h : a > 1), ¬∃ y > 1, y ∣ a ∧ y < minFac a h #[sorryAx] ------------------ Replaying /root/CodeProofTheArena/temp/tmp63o5e0k4/proof2.olean Finished imports Finished replay --- def minFac (a : ℕ) → a > 1 → ℕ := fun (a : Nat) (h : GT.gt.{0} Nat instLTNat a (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) => sorryAx.{1} Nat Bool.false #[sorryAx] --- theorem minFac_ismin ∀ (a : ℕ) (h : a > 1), ¬∃ y > 1, y ∣ a ∧ y < minFac a h #[sorryAx]